Räder und Rollen Apparaterollen

Manuell betätigte Räder und Rollen Deutsche Fassung EN 12530: 1998

DIN EN 12530

ICS 21.180; 53.060

Castors and wheels — Castors and wheels for manually propelled institutional applications; German version EN 12530 : 1998

Roues et roulettes — Roues and roulettes pour équipements de collectivités manuels; Version allemande EN 12530 : 1998

Die Europäische Norm EN 12530: 1998 hat den Status einer Deutschen Norm.

Nationales Vorwort

Diese Europäische Norm wurde vom Technischen Komitee TC 324 "Räder und Rollen" (Sekretariat: Deutschland) des Europäischen Komitees für Normung (CEN) ausgearbeitet.

Deutschland war durch den Spiegelausschuß "Räder und Rollen" im Normenausschuß Eisen-, Blech- und Metallwaren (NA EBM) an der Bearbeitung beteiligt.

Fortsetzung 9 Seiten EN

Normenausschuß Eisen-, Blech- und Metallwaren (NA EBM) im DIN Deutsches Institut für Normung e. V.

Ref.-Nr. DIN EN 12530: 1999-05

EUROPÄISCHE NORM EUROPEAN STANDARD NORME EUROPÉENNE

EN 12530

September 1998

ICS 21.180; 53.060

Deskriptoren: allgemeines Produkt, Rad, Rolle, Förderzeug, Eigenschaft, Produktanforderung, Abmessung, Prüfung, Konformitätsprüfung, Kennzeichnung

Deutsche Fassung

Räder und Rollen Apparaterollen

Manuell betätigte Räder und Rollen

Castors and wheels — Castors and wheels for manually propelled institutional applications

Roues et roulettes — Roues and roulettes pour équipements de collectivités manuels

Diese Europäische Norm wurde von CEN am 30. August 1998 angenommen.

Die CEN-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist.

Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Zentralsekretariat oder bei jedem CEN-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Zentralsekretariat mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Dänemark, Deutschland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Luxemburg, Niederlande, Norwegen, Österreich, Portugal, Schweden, Schweiz, Spanien, der Tschechischen Republik und dem Vereinigten Königreich.

EUROPÄISCHES KOMITEE FÜR NORMUNG

European Committee for Standardization Comité Européen de Normalisation

Zentralsekretariat: rue de Stassart 36, B-1050 Brüssel

Inhalt

		Seite	:	Seite
Vor	wort	2	5.5 Ermüdungsprüfung für die Feststellvorrichtung.	7
1	Anwendungsbereich	2	5.6 Prüfung der Radfeststellung	7
	•	_	5.7 Prüfung der Richtungsfeststellung	7
2	Normative Verweisungen	2	5.8 Statische Prüfung	8
3	Definitionen	2	5.9 Dynamische Prüfung	8
4	Abmessungen und Einteilung	2	5.10 Prüfung der Radfeststellung	8
4.1		_	5.11 Prüfung der Richtungsfeststellung	8
4.2	Ausladung		5.12 Radlagerspiel nach der Prüfung	8
4.3			5.13 Schwenklagerspiel nach der Prüfung	9
4.4	9 9	5	6 Konformität	9
5	Anforderungen	5	7	_
5.1	Normbedingungen	5	7 Kennzeichnung des Produktes	9
5.2			7.1 Kennzeichnung	9
5.3			7.2 Kennzeichnung von elektrisch leitfähigen und	
5 4	Prüfung des elektrischen Widerstandes		antistatischen Rädern und Rollen	9

Vorwort

Diese Europäische Norm wurde vom Technischen Komitee CEN/TC 324 "Räder und Rollen" erarbeitet, dessen Sekretariat vom DIN gehalten wird.

Diese Europäische Norm muß den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis März 1999, und etwaige entgegenstehende nationale Normen müssen bis März 1999 zurückgezogen werden.

Entsprechend der CEN/CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen:

Belgien, Dänemark, Deutschland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Luxemburg, Niederlande, Norwegen, Österreich, Portugal, Schweden, Schweiz, Spanien, die Tschechische Republik und das Vereinigte Königreich.

1 Anwendungsbereich

Diese Europäische Norm legt die technischen Anforderungen, die geeigneten Abmessungen und die Anforderungen für die Prüfungen fest.

Diese Europäische Norm gilt für Räder und Rollen einschließlich eventuell vorhandener Feststellvorrichtungen. Hierbei handelt es sich insbesondere um handbetätigte Produkte in öffentlichen Einrichtungen. Dies sind zum Beispiel: Geschäfte, Restaurants, Hotels, Schulen und Krankenhäuser.

2 Normative Verweisungen

Diese Europäische Norm enthält durch datierte oder undatierte Verweisungen Festlegungen aus anderen Publikationen. Diese normativen Verweisungen sind an den jeweiligen Stellen im Text zitiert, und die Publikationen sind nachstehend aufgeführt. Bei datierten Verweisungen gehören spätere Änderungen oder Überarbeitungen dieser Publikationen nur zu dieser Europäischen Norm, falls sie durch Änderung oder Überarbeitung eingearbeitet sind. Bei undatierten Verweisungen gilt die letzte Ausgabe der in Bezug genommenen Publikation.

EN 12526: 1998

Räder und Rollen — Vokabular, empfohlene Formelzeichen und mehrsprachiges Wörterbuch

EN 12527: 1998

Räder und Rollen - Prüfverfahren und -geräte

3 Definitionen

Für die Anwendung diese Norm gelten die Begriffe und empfohlenen Formelzeichen nach EN 12526: 1998.

4 Abmessungen und Einteilung

Die Merkmale einer Rolle sind:

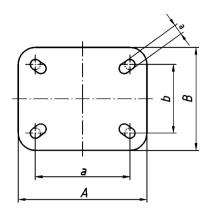
- Befestigungssystem (4.1)
- Ausladung (4.2)
- Rad (4.3)
- Tragfähigkeit (4.4)

4.1 Befestigungssystem

Das Befestigungssystem beinhaltet Befestigungsplatte, Befestigungszapfen und das Rückenloch.

4.1.1 Befestigungsplatte

Die Befestigungsplatten sind in Klassen eingeteilt. Sie schließen rechteckige und quadratische Befestigungsplatten mit vier Befestigungslöchern ein.


Die Form des Außenprofils der Befestigungsplatte ist dem Hersteller überlassen. Voraussetzung ist, daß die Maße innerhalb der Vorgaben liegen, die in den Tabellen 1 und 2 durch die Größen A und B (Bild 1) und die Größen a und A (Bild 2) als der zu akzeptierende Wert vorgegeben sind.

Die Bohrungen oder Langlöcher müssen mit den Bohrungsmitten und den Abmessungen, die in den Tabellen 1 und 2 angegeben sind, übereinstimmen.

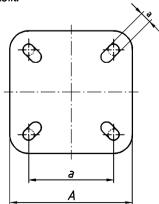
4.1.1.1 Rechteckige Befestigungsplatten

Die Abmessungen und die Einteilung der rechteckigen Befestigungsplatten sind in Tabelle 1 beschrieben und in Bild 1 dargestellt.

Seite 3 EN 12530 : 1998

^a geeignet für G_1

Bild 1: Rechteckige Befestigungsplatten


Tabelle 1: Rechteckige Befestigungsplatten

Abmessungen in Millimeter

Gruppe	Max. Plattenab- messung (A × B)	Loch- abstand $(a \times b)$	Bolzen- durch- messer (G ₁)	Entspre- chender Raddurch- messer (D)
R21	75 × 60	55 × 40	6	50 63 75/80 100
R22	90 × 70	60 × 50	8	75/80 100 125 150/160 200
R23	115 × 85	80 × 60	8	100 125 150/160 200

4.1.1.2 Quadratische Befestigungsplatten

Die Abmessungen und die Einteilung der quadratischen Befestigungsplatten sind in Tabelle 2 beschrieben und in Bild 2 dargestellt.

^a geeignet für G_1

Bild 2: Quadratische Befestigungsplatten

Tabelle 2: Quadratische Befestigungsplatten

Abmessungen in Millimeter

Gruppe	Max. Plat- tenab- messung (A × A)	Loch- abstand $(a \times a)$	Bolzen- durch- messer (G ₁)	Entspre- chender Raddurch- messer (<i>D</i>)
S21	50 × 50	35 × 35	6	50 63 75/80
S22	65 × 65	45 × 45	6	50 63 75/80 100 125
S23	80 × 80	60 × 60	8	63 75/80 100 125 150/160 200
S24	100 × 100	80 × 80	8	75/80 100 125 150/160 200

4.1.2 Befestigungszapfen

Diese Norm sieht den Einsatz von Befestigungszapfen für verschiedene Rohrgrößen vor. Die Länge des Zapfens muß gleich oder größer als das 1,5fache seines Durchmessers sein. Wird der Befestigungszapfen mit einem Rohr verschraubt, muß die Achse der Befestigungsbohrung gegenüber dem Bund des Zapfens einen Abstand von $(19\pm0,25)\,\mathrm{mm}$ aufweisen und ein M8-Gewinde haben, wie in Bild 3 dargestellt.

4.1.3 Rückenloch

Tabelle 3 definiert die Bolzendurchmesser (G_2) für das Rückenloch entsprechend dem Raddurchmesser (D).

4.2 Ausladung

Tabelle 4 definiert die min. und max. Werte der Ausladung (F) bei Lenkrollen, entsprechend dem Raddurchmesser nach Bild 4.

4.3 Räder

Die Merkmale eines Rades sind:

- Durchmesser (siehe Tabelle 5)
- Nabenlänge (siehe Tabelle 5)
- Achslochbohrung (siehe Tabelle 5)
- Tragfähigkeit (4.4)

Die Merkmale eines Rades sind in Bild 5 erklärt, und die Nabenlänge (T_1) und die Achslochbohrungen (d), die jedem Raddurchmesser (D) entsprechen, sind in Tabelle 5 aufgeführt. Weitere Nabenlängen und Achslochbohrungen sind möglich, sofern sie in Rollen montiert sind.

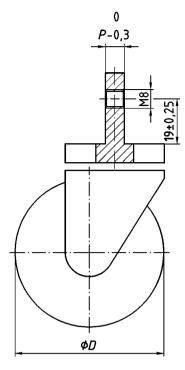


Bild 3: Rolle mit Befestigungszapfen und Gewindebohrung

Tabelle 3: Bolzendurchmesser für das Rückenloch

Abmessungen in Millimeter

Raddurchmesser (D)	Bolzendurchmesser (G_2)
50	8 10
63	8 10
75/80	8 10 12
100	8 10 12
125	8 10 12 16
150/160	12 16
200	12 16

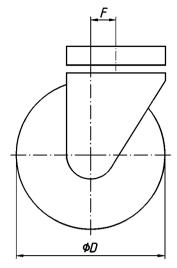


Bild 4: Ausladung

Tabelle 4: Ausladung

Abmessungen in Millimeter

Raddurchmesser (D)	Ausladung (F)	
	Maximum	Minimum
50	30	
63	40	
75	50	
80	50	
100	60	20 % des Rad- durchmessers
125	70	
150	80	
160	85	
200	100	

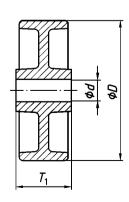


Bild 5: Abmessungen der Räder

Tabelle 5: Abmessungen der Räder

Abmessungen in Millimeter

Raddurchmesser	Nabenlänge*	Durchmesser der Achslochbohrung
(D)	(T_1)	(d)
50	20 /25	6 8
	20 /25	6 8
63	25	8 10
75/80	30 /35	8 10 12
	40 /45	10 12
100	30 /35	8 10 12
	40 /45	10 12
125	30 /35	8 10 12
	40 /45	10 12
150/160	40 /45	12
200	40 /45	12

ANMERKUNG: Bevorzugte Abmessungen sind: 20, 30 und 40 mm

4.3.1 Raddurchmessertoleranzen

Die Toleranz beim Raddurchmesser (D) beträgt \pm 1 % mit einem Minimumwert von \pm 1 mm.

4.3.2 Nabenlängentoleranzen

Die Toleranz der Nabenlänge (T_1) beträgt $+0/-2\,\%$ mit einem Minimumwert von $1\,\mathrm{mm}$.

4.4 Tragfähigkeit

Maximale Last, in N, die von einem Rad oder einer Rolle getragen wird, wenn die geforderten Abnahmekriterien voll erfüllt werden.

5 Anforderungen

Die Anforderungen an die Prüfungen von Rädern und Rollen sind nachfolgend aufgeführt. Die Prüfgeräte und -verfahren sind in EN 12527: 1998 enthalten.

5.1 Normbedingungen

5.1.1 Umgebungsbedingungen

Die Prüfungen sind bei einer Temperatur zwischen $15\,^{\circ}\mathrm{C}$ und $28\,^{\circ}\mathrm{C}$ durchzuführen. $24\,\mathrm{h}$ vor der Prüfung müssen die Prüflinge in der erwähnten Temperatur und in einer Umgebung mit einer relativen Luftfeuchtigkeit zwischen $40\,\%$ und $70\,\%$ gelagert werden.

Die Prüflinge dürfen während der Prüfung nicht künstlich gekühlt werden.

5.1.2 Prüfreihenfolge

Anwendbare Prüfungen sind in der in Tabelle 6 aufgeführten Reihenfolge durchzuführen.

5.2 Anfängliches Radlagerspiel

5.2.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.2.

5.2.2 Abnahmekriterium

Das gemessene anfängliche Radlagerspiel darf den Wert (W_1) in Tabelle 7 nicht überschreiten.

5.3 Anfängliches Schwenklagerspiel

5.3.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.3.

5.3.2 Toleranzen

Die Toleranzen betragen:

- Schwenklagerspiel: Benutzung eines Hebels von $200\,\mathrm{mm}$ zum Messen des Spiels: $\pm\,2\,\mathrm{mm}$
- Winkel bei der Drehung des Schwenkens um 90°: ± 5°

5.3.3 Abnahmekriterium

Das gemessene anfängliche Schwenklagerspiel darf den Wert (S_1) nicht überschreiten.

Formelzeichen	Wert	Beschreibung
S_1	4 mm	maximales anfängliches Schwenklagerspiel

5.4 Prüfung des elektrischen Widerstandes

5.4.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.4.

5.4.2 Abnahmekriterium

Der Widerstand des Prüflings darf den maximalen Abnahmewert (R) nicht überschreiten.

Formelzeichen	Wert	Beschreibung
L_1	variabel	Tragfähigkeit
L_{17}	10% von L_1	Prüflast
R	variabel	gemessener elektrischer Widerstand

Tabelle 6: Prüfreihenfolge für die Bauarten von Rädern und Rollen

Verweis	Prüfreihenfolge	Bauarten	Verweis auf das Prüfverfahren
5.2	Anfängliches Radlagerspiel	Alle	EN 12527, 4.2
5.3	Anfängliches Schwenklagerspiel	Lenkrollen mit oder ohne Zubehör	EN 12527, 4.3
5.4	Elektrischer Widerstand	Elektrisch leitfähige Räder und Rollen	EN 12527, 4.4
5.5	Ermüdungsprüfung für die Feststellvorrichtung	Rollen mit: - Radfeststeller - Richtungsfeststeller - Totalfeststeller - Zentralfeststeller	EN 12527, 4.5
5.6	Prüfung der Radfeststellung	Rollen mit: - Radfeststeller - Totalfeststeller - Zentralfeststeller	EN 12527, 4.6
5.7	Prüfung der Richtungsfeststellung	Rollen mit: - Richtungsfeststeller - Totalfeststeller - Zentralfeststeller	EN 12527, 4.7
5.8	Statische Prüfung	Alle	EN 12527, 4.9
5.9	Dynamische Prüfung	Alle	EN 12527, 4.8
5.10	Prüfung der Radfeststellung	Rollen mit: - Radfeststeller - Totalfeststeller - Zentralfeststeller	EN 12527, 4.6
5.11	Prüfung der Richtungsfeststellung	Rollen mit: - Richtungsfeststeller - Totalfeststeller - Zentralfeststeller	EN 12527, 4.7
5.12	Radlagerspiel nach der Prüfung	Alle	EN 12527, 4.2
5.13	Schwenklagerspiel nach der Prüfung	Lenkrollen mit oder ohne Zubehör	EN 12527, 4.3

Tabelle 7: Anfängliches Radlagerspiel

Abmessungen in Millimeter

Durchmesser des Rades (D)	Max. anfängliches Radlagerspiel (W_1)
50	0,70
63	0,70
75/80	0,80
100	1,00
125	1,25
150/160	1,60
200	2,00

5.4.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
L_1	N	+2%/0
L_{17}	N	+2%/0

5.4.4 Abnahmekriterium

Der Widerstand R des Prüflings muß sein:

- elektrisch leitfähige(s) Rad/Räder oder Rolle/n: $R \leq 10^4\,\Omega$
- antistatische(s) Rad/Räder oder Rolle/n: $10^5 \le R \le 10^7 \Omega$

5.5 Ermüdungsprüfung für die Feststellvorrichtung

5.5.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.5.

5.5.2 Prüfparameter

Die Prüfparameter sind nachstehend aufgeführt.

Formelzeichen	Wert	Beschreibung
E_1	5 000	Häufigkeit der Feststellvorgänge
E_2	10	Zyklen pro min
L_1	variabel	Tragfähigkeit

5.5.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
E_1		+1%/0
E_2	Zyklen pro min	+0%/-2
L_1	N	+2%/0

5.5.4 Abnahmekriterium

Die Forderung gilt als erfüllt, wenn keine Abnutzung und/ oder bleibende Verformung vorhanden ist, die die Gebrauchstüchtigkeit des Prüflings nachteilig beeinflußt.

5.6 Prüfung der Radfeststellung

5.6.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.6.

5.6.2 Prüfparameter

Die Prüfparameter sind nachstehend aufgeführt.

Formelzeichen	Wert	Beschreibung
L_1	variabel	Tragfähigkeit als Prüflast
<i>K</i> ₁	20% von L_1	horizontal wirksame Kraft

5.6.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
L_1	N	+2%/0
K_1	N	+4%/0

Die Toleranz bei der Zeit der Beaufschlagung mit der Kraft K_1 (10 s) beträgt: +2/0 s.

5.6.4 Abnahmekriterium

Das Rad darf sich nicht um seine Achse drehen, wenn die Kraft K_1 angelegt ist.

5.7 Prüfung der Richtungsfeststellung

5.7.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.7.

5.7.2 Prüfparameter

Die Prüfparameter sind nachstehend aufgeführt.

Formelzeichen	Wert	Beschreibung
L_1	variabel	Tragfähigkeit als Prüflast
K_2	20% von L_1	horizontal wirksame Kraft

5.7.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
L_1	N	+2%/0
K_2	N	+2%/0

Die Toleranz bei der Zeit der Beaufschlagung mit der Kraft K_2 (10 s) beträgt: +2/0 s.

5.7.4 Abnahmekriterium

Während der zweiten Beaufschlagung mit der Kraft K_2 ist eine Bewegung des Richtungsfeststellers nicht erlaubt.

EN 12530: 1998

5.8 Statische Prüfung

5.8.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.9.

5.8.2 Prüfparameter

Die Prüfparameter sind nachstehend aufgeführt.

Formelzeichen	Wert	Beschreibung
L_1	variabel	Tragfähigkeit als Prüflast
y_1	3	Lastfaktor
<i>y</i> ₂	1 h	Belastungszeit
<i>y</i> ₃	24 h	zu verstreichende Zeit vor der Kontrolle

5.8.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
L_1	N	+2%/0
<i>y</i> ₂	h	+ 15 min / 0
<i>y</i> ₃	h	± 1 h

5.8.4 Abnahmekriterium

Die Forderung gilt als erfüllt, wenn keine bleibende Verformung vorhanden ist, die die Gebrauchstüchtigkeit des Prüflings nachteilig beeinflußt.

5.9 Dynamische Prüfung

5.9.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.8.

5.9.2 Prüfparameter

Die Prüfparameter sind nachstehend aufgeführt.

Formel- zeichen	Wert	Beschreibung
L_1	variabel	Tragfähigkeit als Prüf- last
v_1	0,83 m/s (3 km/h)	Durchschnittsge- schwindigkeit
v_2	0,83 m/s (3 km/h)	Aufprallgeschwindigkeit auf die Schwellen
<i>h</i> ₁	3 % von <i>D</i>	Höhe der Schwellen
c	1 bis 3 m	Abstand zwischen den Schwellen

Formel- zeichen	Wert	Beschreibung
n	$10 \mathrm{mal} D$ in mm	Anzahl der Schwellen
r_1	nicht erforderlich	Anzahl der Radumdrehungen
z_1	3 min	Laufzeit
z_2	max. 3 min	Pausenzeit
D	variabel	Raddurchmesser

Der aktuelle Raddurchmesser muß vor Beginn und nach Ende der Prüfung gemessen werden, um die Abnutzung zu ermitteln.

5.9.3 Toleranzen

Die Toleranzen sind:

Formelzeichen	Toleranz	
	Einheit	erlaubt
L_1	N	+2%/0
v_1	m/s	+5%/0
v_2	m/s	+5%/0
h_1	mm	0 / - 5 %
n		+1%/0
r_1		+1%/0
z_1	min	± 10 s
z_2	min	± 10 s

Die Toleranzen betragen für:

- die Schwellenbreite (100 mm): ± 2 mm
- den Winkel der Schwellen zur Laufrichtung von 45°:
 ± 3°

5.9.4 Abnahmekriterium

Die Forderung gilt als erfüllt, wenn keine bleibende Verformung vorhanden ist, die die Gebrauchstüchtigkeit des Prüflings nachteilig beeinflußt. Die Verringerung des Raddurchmessers darf $2\,\%$ des gemessenen Durchmessers nicht überschreiten.

5.10 Prüfung der Radfeststellung

Wiederholung der Prüfung unter 5.6.

5.11 Prüfung der Richtungsfeststellung

Wiederholung der Prüfung unter 5.7.

5.12 Radlagerspiel nach der Prüfung

5.12.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.2.

Seite 9 EN 12530 : 1998

5.12.2 Abnahmekriterium

Die Radlagerspielzunahme, errechnet aus der Differenz vom gemessenen anfänglichen und dem Radlagerspiel nach der Prüfung, darf den Wert W_2 in Tabelle 8 nicht überschreiten.

Tabelle 8: Radlagerspiel

Abmessungen in Millimeter

Raddurchmesser (D)	$\begin{array}{c} \text{Maximale Radlagerspiel-} \\ \text{zunahme} \\ (W_2) \end{array}$
50	0,40
63	0,50
75/80	0,64
100	0,80
125	1,00
150/160	1,28
200	1,60

5.13 Schwenklagerspiel nach der Prüfung

5.13.1 Ziel der Prüfung, Prüfgeräte und -verfahren

Sie sind beschrieben in EN 12527: 1998, 4.3.

5.13.2 Toleranzen

Die Toleranzen betragen:

- Schwenklagerspiel: Benutzung eines Hebels von $200\,\mathrm{mm}$ zum Messen des Spiels: $\pm\,2\,\mathrm{mm}$
- Winkel bei der Drehung des Schwenkens um 90°: ± 5°

5.13.3 Abnahmekriterium

Die Schwenklagerspielzunahme, errechnet aus der Differenz vom gemessenen anfänglichen und dem Schwenklagerspiel nach der Prüfung, darf den Wert S_2 nicht überschreiten.

Formelzeichen	Wert	Beschreibung
S_2	4 mm	maximale Schwenk- lagerspielzunahme

6 Konformität

Der Hersteller stellt auf Verlangen eine Konformitätserklärung aus, in der bestätigt wird, daß die Rollen den in vorliegendem Dokument aufgeführten Anforderungen entsprechen.

Der Typ der Prüfmaschine muß in der Konformitätserklärung festgehalten werden.

7 Kennzeichnung des Produktes

7.1 Kennzeichnung

Alle Produkte müssen dauerhaft und klar erkenntlich mit dem Namen und/oder dem Markenzeichen des Herstellers gekennzeichnet sein.

7.2 Kennzeichnung von elektrisch leitfähigen und antistatischen Rädern und Rollen

Alle Produkte müssen auf ihrer Außenfläche ein klar erkennbares gelbes Zeichen aufweisen. Antistatische Produkte sollten — wo geeignet und möglich — das Wort "antistatisch" enthalten.